	S4 Nat 5 Prelim Paper A – Non-Calculator	20
1.	Multiply out the brackets and collect like terms $(3x+2)(x^2+5x-1)$	2
2.	A function is given as $f(x) = 8x - 20$. (a) Calculate $f(-3)$ (b) Find x when $f(x) = 12$	3
3.	A quadratic graph has equation $y = (x-4)^2 + 7$.	
	(a) State the nature of the turning point of the graph?	1
	(b) Which of the following is the equation of its axis of symmetry?	
	$\begin{array}{cccc} A & x = -4 & B & x = 4 \\ C & x = 7 & D & x = -7 \end{array}$	1
	C x = I $D x = I$	
4.	Simplify (a) $\frac{a^7 b^3}{2 \sqrt{5}}$ (b) $\frac{3x - 15}{2 \sqrt{5}}$	2
	$a^{-}b^{+}$ $x^{-} - 25$	3
5.	Change the subject of the formula to r $A = 4 - x^2$	
	$A = 4\pi r^2$	
6.	The diagram below shows the graph of $y = a \cos bx^\circ$ for $0 \le x \le 360$.	
	y 4 0 360 x	
		2
	Write down the values of <i>a</i> and <i>b</i> .	
	22	<u> </u>
/.	(a) Express $\frac{22}{\sqrt{2}}$ with a rational denominator.	2
	Write your answer in the simplest form	
	(b) Evaluate $9^{\frac{3}{2}}$	2

	S4 Nat 5 Prelim Paper A – Calculator	35
1.	C 54° 7·3 cm	
	Calculate the perimeter of the sector, PCR P	3
2.	The diagram below shows two shapes which are mathematically similar.	
	The smaller shape has a length of 10cm and an area of 135 cm ² . The larger shape has a length of 25cm, calculate its area.	3
3.	Solve the quadratic equation $2x^2 + 7x - 3 = 0$ Give your answers correct to 1 decimal place	4
4.	For one of their performances a drama group charges different ticket prices for each evening. Sarah bought 3 tickets for Friday and 4 tickets for Saturday which cost her £57.	S
	(a) Using x to represent the Friday tickets and y to represent the Saturda tickets, write an equation to illustrate the above situation.	ıy 1
	Sean bought 4 tickets for Friday and 2 for Saturday. He was charged £46.	
	(b) Write another equation in x and y to illustrate this situation.	1
	(c) How much did Stella pay when she bought 6 tickets for Friday and 3 for Saturday?	4

	Answers – Paper 1			
1.	1. $(3x+2)(x^2+5x-1) = 3x^3+15x^2-3x + 2x^2+10x-2 = 3x^3+17x^2+7x-2$			
2.	(a) $f(-3) = 8(-3) - 20 = -44$	(b) $f(x) = 12 \rightarrow 8x - 20 = 12 \rightarrow 8x = 32 \rightarrow x = 4$		
3.	(a) Minimum turning point	(b) axis of symmetry is $x = 4$ B		
4.	(a) $\frac{a^5}{b^2}$	(b) $\frac{3x-15}{x^2-25} = \frac{3(x-5)}{(x-5)(x+5)} = \frac{3}{x+5}$		
5.	$A = 4\pi r^2 \rightarrow \frac{A}{4\pi} = r^2 \rightarrow \sqrt{\frac{A}{4\pi}} = r$	r 6. $y = 4\cos 2x$ $a = 4$ and $b = 2$		
7.	(a) $\frac{22}{\sqrt{2}} = \frac{22\sqrt{2}}{\sqrt{2}\sqrt{2}} = \frac{22\sqrt{2}}{2} = 11\sqrt{2}$	² (b) $9^{\frac{3}{2}} = (\sqrt{9})^3 = 3^3 = 27$		
		Answers – Paper 2		
1.	Perimeter PCR = $7.3 + 7.3 + \frac{54}{360}$	$\times \pi \times 14.6 = 14.6 + 6.88 = 21.5 \text{ cm}$		
2.	LSF = $\frac{25}{10} \text{ or } \frac{5}{2}$ Area of larger shape is 135 x $\left(\frac{25}{10}\right)^2$ = 843.75 cm ²			
3.	a = 2, b = 7, c = -3,			
	$b^2 - 4ac = (7)^2 - 4(2)(-3) = 79$ x	$=\frac{7\pm\sqrt{73}}{4}=0.386$ and -3.886 $x = 0.4$ and -3.9		
4.	$3x + 4y = 57 \qquad \qquad 3x + 4y$	y = 57 $x = 7, y = 9D2 Extended to 57. Set with 40$		
	$4x + 2y = 46 \qquad \underline{\delta x + 4y}$	$\frac{y = 92}{\text{Stella paid } \pounds 69}$		
5.	<CAB = 180° – 59° = 121°	$\frac{BC}{\sin 121} = \frac{8}{\sin 22} \rightarrow BC = \frac{8 \times \sin 121}{\sin 22} = 18.3 \text{ m}$		
6.	Right-angled triangle x 2.5	$x = \sqrt{2.5^2 - 1.35^2} = 2.1 cm$		
	1.35 Height is $2.1 + 2.5 = 4.6$ cm			
7.	$\sin x = 4/7 \longrightarrow x = \sin^{-1}(4/7) \text{ and } 180^\circ - \sin^{-1}(4/7) x = 34.8^\circ \text{ and } 145.2^\circ$			
8.	Area of rhombus = 2 x area of triangle = $2 \times \frac{1}{2} \times 20 \times 20 \times \sin 140 = 257 \text{ cm}^2$			
9.	Vol of hemisphere = $\left(\frac{4}{3} \times \pi \times 8^3\right) \times \frac{1}{2}$	$\frac{1}{2} = 1072 \text{ cm}^3$ Vol of cone = $1334 - 1072 = 262 \text{ cm}^3$		
		$262 = \frac{1}{3} \times \pi \times 5^2 \times h \mathbf{h} = 10 \text{ mm}$		

	S4 Nat 5 Prelim Paper B – Non-Calculator	20
1.	Remove the brackets and simplify $(2x + 3)^2 - 3(x^2 - 6)$	2
2.	 (a) Calculate the gradient of the straight line between the points (-2, -7) and (3, 3) (b) State the equation of the straight line between these two points in the simplest form 	1 2
3.	Solve the inequation $2 - 2(1 + x) < 20$	3
4.	Sketch the graph of $y = 3\sin 2x$, $0^{\circ} \le x \le 360^{\circ}$	2
5.	Write in its simplest form $\frac{\sqrt{54}}{\sqrt{2}} - 2\sqrt{3}$	3
6.	(a) Simplify $a^{\frac{1}{2}} \times a^{\frac{1}{6}}$	1
	(b) Hence find the value of $a^{\frac{1}{2}} \times a^{\frac{1}{6}}$ when $a = 27$.	2
7.	The diagram shows part of the graph of $y = x^2 + 6x + c$. (6) Find the value of c . $\begin{array}{c c} y \\ -8 \\ 0 \\ 2 \\ x\end{array}$	2
	(6) Hence find the coordinates of the point A. A	2

4.	 There are 14 cars and 20 passengers on the first ferry from Mull and the total takings are £393.00 (a) Let <i>x</i> be the price in pounds for a car and <i>y</i> be the price in pounds for a passenger. Write an equation in <i>x</i> and <i>y</i> which satisfies this condition (b) On the last ferry of the day there were 9 cars and 15 passengers and the total takings were £261. Write down a second equation which satisfies these conditions 	
	(c) Find the cost for one car and the cost for one passenger	4
5.	Solve the equation $7\cos x^\circ - 5 = 0$ for $0 \le x \le 360$	3
6.	Express $\frac{2}{x+5} + \frac{3}{x-1}$, $x \neq -5$, $x \neq 1$, as a single fraction in the simplest form	3
7.	Brunton is 30 Km due North of Appleby From Appleby, the bearing of Carltown is 060° From Brunton the bearing of Carltown is 130° N A B 20 km A Calculate the distance between Brunton and Carltown	4

8.	The boat on a carnival ride travels along an arc of a circle, centre C.	
	The boat is attached to C by a rod which is 6 metres long.	
	6 m The rod swings from position CA to position CB.	
	A B The length of the arc AB is 7 metres.	4
	Find the angle through which the rod swings from position A to position B	
9.	The diagram shows the cross section of a paper weight. It consists of part of a circle with a horizontal base.	
	The centre of the circle is O.	
	AB is a chord of the circle.	
	The height of the paper weight is 9.6cm. $0 = 9.6$ cm	4
	The radius of the circle is 5cm.	
	Calculate the length of the chord AB. A B	
10.	 Angle <i>a</i> can be described by the following statements <i>a</i> is greater than zero and less than 360° sin <i>a</i> is negative 	
	 tan a is is negative 	
	• $\cos a$ is positive	1
	Write down a possible value for <i>a</i>	

Answers – Paper 1		
1.	$(2x+3)(2x+3) - 3x^2 + 18 = 4x^2 + 6x + 6x + 9 - 3x^2 + 18 = x^2 + 12x + 27$	
2.	(a) $m = 10/5 = 2$ (b) $y = 2x - 3$	
3.	$2-20 < 2(1+x) \rightarrow -18 < 2+2x \rightarrow -20 < 2x \rightarrow -10 < x \text{ or } x > -10$	
4.	Period is 180°, max value is 3, min value is -3 $3 \qquad 3 \qquad -3 \qquad -3 \qquad -3 \qquad -3 \qquad -3 \qquad -3 \qquad -$	
5.	$\sqrt{\frac{54}{2}} - 2\sqrt{3} = \sqrt{27} - 2\sqrt{3} = 3\sqrt{3} - 2\sqrt{3} = \sqrt{3}$	
6	(a) $a^{1/2+1/6} = a^{4/6} = a^{2/3}$ (b) $27^{2/3} = (\sqrt[3]{27})^2 = 3^2 = 9$	
7.	(a) $y = (x+8)(x-2)$ $y = x^2 + 6x - 16$ (b) $y = x^2 + 6x - 16$ $y = (x+3)^2 - 25$ A = (-3, -25)	
	Answers – Paper 2	
1.	Area triangle = $\frac{1}{2} \times 3.3 \times 7.4 \times \sin 35 = 7 \text{ cm}^2$	
2.	Vol of sphere = $\left(\frac{4}{3} \times \pi \times 4.5^3\right)$ = 381.70 cm ³ Vol of cylinder = $\pi \times 2.7^2 \times 4.9 = 112.22$ cm ³ Vol of liquid = 381.70 - 112.22 = 269.48 cm ³ = 270 cm³	
3.	By Pythagoras $c^2 = a^2 + b^2 \rightarrow 20.2^2 = 10^2 + 17.5^2 \rightarrow 408.04 \neq 406.25$ By the converse of Pythagoras this is not a right-angled triangle	
4.	14x + 20y = 393x 9 $126x + 180y = 3537$ $x = 22.5, y = 3.9$ $9x + 15y = 261$ x 14 $126x + 210y = 3654$ Car £22.50Passenger £3.90	
5.	$\cos x = 5/7 \rightarrow x = \cos^{-1}(5/7) \text{ and } 360^{\circ} - \cos^{-1}(5/7) x = 44.4^{\circ} \text{ and } 315.6^{\circ}$	
6.	$\frac{2(x-1)}{(x+5)(x-1)} + \frac{3(x+5)}{(x+5)(x-1)} = \frac{2x-2+3x+15}{(x+5)(x-1)} = \frac{5x+13}{(x+5)(x-1)}$	
7.	Angle at B is $180^{\circ} - 130^{\circ} = 50^{\circ}$ Angle at C is $180^{\circ} - 50^{\circ} - 60^{\circ} = 70^{\circ}$ $\frac{BC}{\sin 60} = \frac{20}{\sin 70} \rightarrow BC = \frac{20 \times \sin 60}{\sin 70} = 18.4 \text{ km}$	
8.	$7 = \frac{\theta}{360} \times \pi \times 12 \rightarrow \qquad \qquad \theta = \frac{7 \times 360}{\pi \times 12} = 66.8^{\circ}$	

9.	Right-angled triangle 4.6 5	$x = \sqrt{5^2 - 4.6^2} = 1.96 cm$
		width is 2 x 1.96 = 3.92 cm
10.	Angle is in the fourth quadrant	$270^{\circ} < a < 360^{\circ}$